<u>Partie 1</u>: Suites récurrentes affines du premier ordre à cœfficients constants

Dans tout ce qui suit $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Il s'agit des suites $(u_n)_{n\in\mathbb{N}}$ de \mathbb{K} telles qu'il existe $(a,b)\in\mathbb{K}^2$ tel que :

$$\forall n \in \mathbb{N}, \ u_{n+1} = au_n + b.$$

- 1) Donner la nature de la suite lorsque a = 1.
- **2)** On suppose $a \neq 1$. Montrer qu'il existe $\lambda \in \mathbb{K}$, tel que :

$$\forall n \in \mathbb{N}, \ u_n = a^n(u_0 - \lambda) + \lambda.$$

3) Applications : Étudier la suite $(u_n)_n$ définie par

$$\left\{egin{array}{l} u_0=1 \ orall n\in \mathbb{N}, \quad u_{n+1}=rac{1}{2}u_n+rac{\sqrt{2}}{2} \end{array}
ight.$$

<u>Partie 2</u>: Suites récurrentes linéaires du second ordre à cœfficients constants

Soit (a,b) dans \mathbb{K}^2 . On désigne par $E_{a,b}$ l'ensemble des suites $(u_n)_{n\in\mathbb{N}}$ à valeurs dans \mathbb{K} telles que

$$\forall n \in \mathbb{N}, \ u_{n+2} = au_{n+1} + bu_n,$$

appelées suites récurrentes linéaires du second ordre à cœfficients constants.

- 4) Montrer que $E_{a,b}$ n'est pas vide.
- 5) Montrer que toute combinaison linéaire de deux éléments de $E_{a,b}$ est élément de $E_{a,b}$.
- **6)** Notons $(U_n)_{n\in\mathbb{N}}$, $(V_n)_{n\in\mathbb{N}}$ les deux éléments de $E_{a,b}$ définis par :

$$\left\{ egin{array}{ll} U_0 = 1, & U_1 = 0 \ V_0 = 0, & V_1 = 1 \end{array}
ight. .$$

- **a**/ Soit $(\alpha, \beta) \in \mathbb{K}^2$ tel que $\forall n \in \mathbb{N}, \ \alpha U_n + \beta V_n = 0$. Montrer que $\alpha = \beta = 0$. On dira que $((U_n)_n, (V_n)_n)$ est libre dans $E_{a,b}$.
- **b**/ Soit $(u_n)_n \in E_{a,b}$. Montrer que

$$\forall n \in \mathbb{N}, \ u_n = u_0 U_n + u_1 V_n$$

On dira que $((U_n)_n, (V_n)_n)$ est générateur de $E_{a,b}$.

Partie 3 : Recherche d'éléments particuliers de $E_{a,b}$

L'équation $r^2 - ar - b = 0$, d'inconnue $r \in \mathbb{K}$, est appelée l'équation caractéristique des suites récurrentes linéaires du second ordre à cœfficient constant. On pose $\Delta = a^2 + 4b$.

- 7) On suppose que $\Delta \neq 0$ (lorsque $\mathbb{K} = \mathbb{C}$) ou $\Delta > 0$ (lorsque $\mathbb{K} = \mathbb{R}$). Montrer qu'il existe r_1 et r_2 dans \mathbb{K} tel que toute suite de $E_{a,b}$ s'écrive comme combinaison linéaire des suites géométriques $(r_1^n)_n, (r_2^n)_n$ appartenant à $E_{a,b}$.
- 8) On suppose que $\Delta = 0$. Montrer qu'il existe r_0 dans \mathbb{K} , tel que toute suite de $E_{a,b}$ s'écrive comme combinaison linéaire des deux suites $(r_0^n)_n$, $(nr_0^{n-1})_n$ appartenant à $E_{a,b}$.
- 9) On suppose que $\Delta < 0$, $(\mathbb{K} = \mathbb{R})$. On note $E'_{a,b}$ l'ensemble des suites complexes $(u_n)_{n \in \mathbb{N}}$ vérifiant la récurrence :

$$\forall n \in \mathbb{N}, \ u_{n+2} = au_{n+1} + bu_n.$$

- **a**/ Montrer que $E_{a,b} = E'_{a,b} \cap \mathbb{R}^{\mathbb{N}}$.
- **b**/ Montrer que $E'_{a,b} = \{(\lambda_1 r_1^n + \lambda_2 r_2^n)_{n \in \mathbb{N}} / (\lambda_1, \lambda_2) \in \mathbb{C}^2\}$, où r_1 et r_2 sont à déterminer dans \mathbb{C} .
- **c**/ Montrer que :

$$E_{a,b} = \left\{ (\lambda_1 r_1^n + \overline{\lambda_1 r_1^n})_{n \in \mathbb{N}} / \lambda_1 \in \mathbb{C} \right\}.$$

d/ En posant

$$\lambda_1 = rac{1}{2}(A-iB), \quad (A,B) \in \mathbb{R}^2,
onumber \
ho = |r_1|, \quad heta = rg(r_1).$$

Déduire de ce qui précède, la forme générale des éléments de $E_{a,b}$

Partie 4: Applications

10) Suite de Fibonacci

Calculer le terme général de la suite $(\phi_n)_{n\in\mathbb{N}}$ telle que

$$\left\{egin{array}{ll} \phi_0=0, & \phi_1=1 \ orall n\in \mathbb{N}, & \phi_{n+2}=\phi_{n+1}+\phi_n \end{array}
ight..$$

11) Calculer u_n sachant que

$$\left\{ \begin{array}{ll} u_0=0, & u_1=1 \\ \forall n\in\mathbb{N}, & u_{n+2}=-2u_{n+1}-4u_n \end{array} \right. .$$